

Multiplexed imaging as an innovative approach for single-cell spatial profiling of brain pathology Eka Norfaishanty Saipuljumri¹, Esha Manchanda², Jialiu Zeng¹, Chih Hung Lo¹ ¹Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore ²School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore The Lo & Zeng Labs will move to Syracuse University starting January 2025 (www.lo-zeng-labs.com) Correspondence: Jialiu Zeng (jzeng22@syr.edu) and Chih Hung Lo (clo101@syr.edu)

Background and Approach

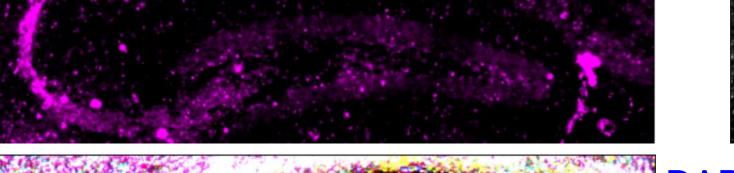
• Single-cell spatial proteomic analysis maps protein interactions and localization at a single-cell resolution to understand various pathway correlation^{1,2}.

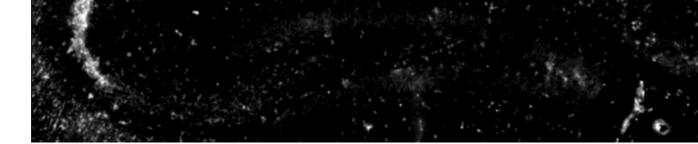
•The current proteomic system that studies brain abnormal pathologies averages across a group of cells which may hide certain lineages and spatial heterogeneity that is unique to each cell³. •In this study, we investigate the use of 4i staining and single-cell analysis techniques to uncover molecular events or pathways that determine precise protein abundance and interaction within a cell in the brain.

Antibody elution

Imaging •

1st protein


2nd protein Immunofluorescence


	Single-cell Proteomic A	nalysis	Comparison of Single-Cell Proteome Analysis Techniques		
Image Acquisition	Pros	Cons	Image Processing	Pros	Cons
4i: Multiplex protein measurement using fluorescence	Visualize 80~ unique epitope; off- the-shelf 1° and 2° antibody; up to 40x magnification; commercial cost;	Light sensitive; limited to panel antibodies; high background fluorescence; decreasing tissue	FIJI (Descarpentrie et al. NIH, 2024)	Compatible to different imaging modalities; extensive plugins; multichannel data; adjustable threshold	Only able to open files up to 50MB; open-source tools have limited official technical support
(Gut et al.Science, 2018)	time efficient; cellular localization	integrity; labor intensive	PENGUIN	Preprocessing tools increase efficiency;	Significant variability due to
Synchronizing tissue the-shelf 1° and 2° antibody;		Requires more time for clearance sequence and gel formation; autofluorescence; gradual tissue weakening; does not preserve mRNA; 25x magnification	(Sequeira et al. Comput Struct Biotechnol J, 2024)	decreases background noise; percentile normalization; user-friendly interface	sensitive 'P' and 'T' tailoring
	commercial cost; thicker samples; ensures uniform staining		SpatialDE (Svensson et al. Nat Methods, 2018	Rapid and efficient image preprocessing; enhanced normalization and denoising capabilities	Requires programming knowledge for customization; primarily for transcriptomics
IMC: Imaging using mass-tags (metal) (Kuett et al. Nature Cancer, 2021)	Visualize 40~ unique antigens simultaneously; minimal background noise; no cross-talk between channels	Expensive antibodies; longer imaging time; 16x resolution; insensitive to low abundance proteins	Steinbock (Windhager et al. Nat Protoc, 2023)	Multiplex capability on a single section; utilizes pre-learnt machine models; image pre-processing tools; segmentation accuracy; feature extraction	Limited to certain imaging modalities; large computational power; limited technical support; sensitive parameters
MSI: Capture intensity	Visualization of biodistribution or	10x resolution; not feasible to	Watershed	Compatible for images with complex and	Sensitive to noise (over-
distribution using ions (Shimma. Mass Spectrom, 2022)	organic structures; non-antibody; simultaneous molecule detection; fast scanning speed	molecule detection; separation capabilities; expensive	(Meyer et al. Visual Comm and Image Rep J, 1990)	overlapping structure; minimal computation time; can isolate subcellular structures	Ύ,
MALDI: Matrix	Big database for different peptide	Protein database limitation; 10x	Phenotyping	Pros	Cons
crystallization ionization		resolution; limited to proteins	histoCAT:	Characterizes cellular morphological and	Prior knowledge in

ystailization ionization mass, identity so proteins simultaneously; commercial cost; with laser beams Vehder et al. J of HistoChem & pseudo-color for intensity Cytochem, 2010)

B

functional phenotypes; analyze up to programming languages; memory and processing power cellular social networks; spatial organization and interaction intensive for large datasets (Schapiro et al. Nat Methods, 2017) CellProfiler Available official tutorials; adjustable Limited built-in features; modular designs; deep learning memory intensive; incapable to handle multichannel data integration; supports 3D images (Bray et al. Nat Protoc, 2016) Requires powerful CPU/GPU; Amateur-friendly; supports various llastik classifiers; customizable pixel features to incapable to handle multichannel data; limited increase accuracy; modifiable training representation segmentation system (Berg et al. Nat Methods, 2019) CytoMAP Advanced interface with positional Significant computational correlation and dimensionality reduction; resources; data overlap; comprehensive cellular morphological normalization/clustering characterization challenges (Caleb R et al. Cell Reports, 2020) Pre-trained nucleus segmentation; high Limited to pre-trained models; CellSeg accuracy; diverse image input; automated; limited customization; python visualization tools knowledge (Lee et al. BMC Bioinfo, 2022) Computational Pros Cons **Pseudotime** Identify genes that drive biological Inaccurate smooth trajectory; process; quantitative; versatile process significant computational skills identification; identify cellular progression and time needed through a developmental trajectory (Hou et al. Nat Com, 2023) **SVCA** Yield robust spatial variance signature; High expertise in computational reveal key molecular pathways; identify biology and statistics; sensitive effects of cell-cell interactions on gene to noise or artifacts expressions (Arnol et al. Cell Reports, 2019)

<20kDa, high abundance and

soluble polymer; long imaging time

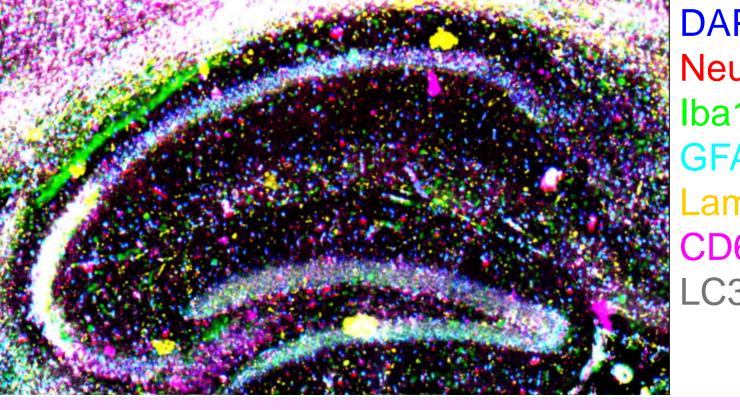


Fig.1. Immunofluorescence images of (A) Neun, (B) Iba1, (C) GFAP, (D) Lamp1, (E) CD68 and (F) LC3-II (G) merged in the hippocampal region of WT mouse brains with 4i technique.

Publications from the Labs

- 1. Lo et al. (2021) Astrocyte Heterogeneity in Multiple Sclerosis: Current Understanding and Technical Challenges. Front Cell Neuroscience. Vol 15.
- 2. O'Connor et al. (2023) Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. Journal of Pharmaceutical Analysis. 13(8), 836-850.
- 3. O'Connor et al. (2023) Data Mining of Microarray Datasets in Translational Neuroscience. *Brain* <u>Science.</u>19(9):13(9), 1318.

Outcomo						
(Moon et al. Nat Biotechnol, 2019)	expression patterns; preserve distance	noise/artifacts; no quantification				
PHATE	High resolution mapping; versatile to various cellular composition and gene	Advanced computational and statistical skills; sensitive to				
(Somarakis et al. IEEE, 2021)	and microenvironments	quantification feature				
ImaCytE	Amateur-friendly; identify cells phenotypes	Limited to data from IMC; no				
GIOTTO (Dries et al. Genome Biol, 2021)	Supports various imaging datasets; interactive modules; identify tissue composition and spatial expression pattern; quantitative	Specifically targeted for spatial transcriptomic use (algorithms); sensitive to noise and artifacts; interpretation challenges				
	Supports Various imaging datasets.	Shacifically targatad for shared				

Jucome

Deciphering cell-cell interactions to uncover disease mechanisms and drive the development of more effective therapeutics

Summary & Acknowledgements

- In summary, the use of 4i for image acquisition and further processing with FIJI and histoCAT will provide an accurately segmented and characterized multiplex image.
- \succ Imaging data can be analyzed for spatial interaction, trajectory progress and more in brain samples from various neurodegenerative models.

References: (1) Rosenberger et al. (2023). Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. <u>Nature Methods</u>. 20,1530–15 Multiplexed protein maps link subcellular organization to cellular states. Science. Vol 361, Issue 6401. (3) Vandereyken et al. (2023), Methods and application multi-omics. Nature Reviews Genetics. 24, 494–515. We thank Assistant Professor Anna Barron for hosting Dr Chih Hung Lo as a Dean's Postdoctoral Fellow in her lab.