
•Single-cell spatial proteomic analysis maps protein interactions and 

localization at a single-cell resolution to understand various pathway 

correlation1,2.

•The current proteomic system that studies brain abnormal 

pathologies averages across a group of cells which may hide certain 

lineages and spatial heterogeneity that is unique to each cell3.

• In this study, we investigate the use of 4i staining and single-cell 

analysis techniques to uncover molecular events or pathways that 

determine precise protein abundance and interaction within a cell in 

the brain. 
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Fig.1. Immunofluorescence 

images of (A) Neun, (B) Iba1, (C) 

GFAP, (D) Lamp1, (E) CD68 and 

(F) LC3-II (G) merged in the 

hippocampal region of WT mouse 

brains with 4i technique. 

Multiplexed imaging as an innovative approach for 

single-cell spatial profiling of brain pathology
Eka Norfaishanty Saipuljumri1, Esha Manchanda2, Jialiu Zeng1, Chih Hung Lo1

1Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
2School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore

The Lo & Zeng Labs will move to Syracuse University starting January 2025 (www.lo-zeng-labs.com)

Correspondence: Jialiu Zeng (jzeng22@syr.edu) and Chih Hung Lo (clo101@syr.edu) 

E

C

F

G

Image Processing Pros Cons
FIJI Compatible to different imaging modalities; 

extensive plugins; multichannel data; 

adjustable threshold 

Only able to open files up to 

50MB; open-source tools have 

limited official technical support

PENGUIN Preprocessing tools increase efficiency; 

decreases background noise; percentile 

normalization; user-friendly interface

Significant variability due to 

sensitive ‘P’ and ‘T’ tailoring

SpatialDE Rapid and efficient image preprocessing; 

enhanced normalization and denoising 

capabilities

Requires programming 

knowledge for customization; 

primarily for transcriptomics

Steinbock Multiplex capability on a single section; 

utilizes pre-learnt machine models; image 

pre-processing tools; segmentation 

accuracy; feature extraction 

Limited to certain imaging 

modalities; large computational 

power; limited technical 

support; sensitive parameters

Watershed Compatible for images with complex and 

overlapping structure; minimal computation 

time; can isolate subcellular structures

Sensitive to noise (over-

segmentation); user parameter 

and edge selection sensitivity 

➢ In summary, the use of 4i for image acquisition and further processing with FIJI and 

histoCAT will provide an accurately segmented and characterized multiplex image.

➢ Imaging data can be analyzed for spatial interaction, trajectory progress and more in brain 

samples from various neurodegenerative models.

Phenotyping Pros Cons
histoCAT: Characterizes cellular morphological and 

functional phenotypes; analyze up to 

cellular social networks; spatial 

organization and interaction 

Prior knowledge in 

programming languages; 

memory and processing power 

intensive for large datasets

CellProfiler Available official tutorials; adjustable 

modular designs; deep learning 

integration; supports 3D images

Limited built-in features; 

memory intensive; incapable to 

handle multichannel data

Ilastik Amateur-friendly; supports various 

classifiers; customizable pixel features to 

increase accuracy; modifiable 

segmentation system 

Requires powerful CPU/GPU; 

incapable to handle 

multichannel data; limited 

training representation

CytoMAP Advanced interface with positional 

correlation and dimensionality reduction; 

comprehensive cellular morphological 

characterization

Significant computational 

resources; data overlap; 

normalization/clustering 

challenges

CellSeg Pre-trained nucleus segmentation; high 

accuracy; diverse image input; automated; 

visualization tools 

Limited to pre-trained models; 

limited customization; python 

knowledge

Computational Pros Cons
Pseudotime Identify genes that drive biological 

process; quantitative; versatile process 

identification; identify cellular progression 

through a developmental trajectory

Inaccurate smooth trajectory; 

significant computational skills 

and time needed

SVCA Yield robust spatial variance signature; 

reveal key molecular pathways; identify 

effects of cell-cell interactions on gene 

expressions

High expertise in computational 

biology and statistics; sensitive 

to noise or artifacts

Giotto Supports various imaging datasets; 

interactive modules; identify tissue 

composition and spatial expression 

pattern; quantitative

Specifically targeted for spatial 

transcriptomic use (algorithms); 

sensitive to noise and artifacts; 

interpretation challenges

ImaCytE Amateur-friendly; identify cells phenotypes 

and microenvironments

Limited to data from IMC; no 

quantification feature

PHATE High resolution mapping; versatile to 

various cellular composition and gene 

expression patterns; preserve distance

Advanced computational and 

statistical skills; sensitive to 

noise/artifacts; no quantification

Outcome

Deciphering cell-cell interactions to uncover disease mechanisms and drive the development 

of more effective therapeutics
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Image Acquisition Pros Cons

4i: Multiplex protein 

measurement using 

fluorescence

Visualize 80~ unique epitope; off-

the-shelf 1° and 2° antibody; up to 

40x magnification; commercial cost; 

time efficient; cellular localization

Light sensitive; limited to panel 

antibodies; high background 

fluorescence; decreasing tissue 

integrity; labor intensive

SWITCH: 

Synchronizing tissue 

preservation reaction

Visualize 100~ unique epitope; off-

the-shelf 1° and 2° antibody; 

commercial cost; thicker samples; 

ensures uniform staining

Requires more time for clearance 

sequence and gel formation; 

autofluorescence; gradual tissue 

weakening; does not preserve 

mRNA; 25x magnification

IMC: Imaging using 

mass-tags (metal)

Visualize 40~ unique antigens 

simultaneously; minimal background 

noise; no cross-talk between 

channels

Expensive antibodies; longer 

imaging time; 16x resolution; 

insensitive to low abundance 

proteins

MSI: Capture intensity 

distribution using ions 

Visualization of biodistribution or 

organic structures; non-antibody; 

simultaneous molecule detection; 

fast scanning speed

10x resolution; not feasible to 

cellular-level observation; limit 

separation capabilities; expensive 

equipment and maintenance

MALDI: Matrix 

crystallization ionization 

with laser beams

Big database for different peptide 

mass; identify 96 proteins 

simultaneously; commercial cost; 

pseudo-color for intensity

Protein database limitation; 10x 

resolution; limited to proteins 

<20kDa, high abundance and 

soluble polymer; long imaging time 
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