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I. INTRODUCTION

The use of metagenomic data for disease prediction is a

rapidly growing field, and it involves identifying patterns in

the types and relative abundances of different microorganisms

that are associated with different disease states.

Alterations in the gut microbiome, often referred to as

dysbiosis, have been associated with a variety of diseases.

It’s thought that dysbiosis may contribute to disease through

several mechanisms:

1. Inflammation: Dysbiosis can lead to an overactive immune

response, causing chronic inflammation. This has been

implicated in diseases like inflammatory bowel disease (IBD),

obesity, and cardiovascular disease.

2. Loss of Barrier Function: Dysbiosis can impair the gut

barrier, allowing bacteria and bacterial products to cross into

the bloodstream, a condition known as ”leaky gut”. This can

trigger inflammation and has been implicated in diseases like

IBD and celiac disease.

3. Metabolic Disruption: Changes in the gut microbiome

can disrupt normal metabolic functions, potentially leading

to conditions like obesity, metabolic syndrome, and type 2

diabetes.

4. Neurological Effects: Changes in the gut microbiome may

impact the gut-brain axis and contribute to neurological

and mental health conditions, such as depression, anxiety,

autism, and possibly even neurodegenerative diseases like

Parkinson’s and Alzheimer’s.

5. Pathogen Expansion: Dysbiosis can allow harmful

pathogens to proliferate, which can lead to infectious diseases

or contribute to chronic diseases like IBD.

The relationships observed between the human gut micro-

biome and overall health highlight the potential of machine

learning in predicting diseases from metagenomic data. The

complex nature of these associations offers a fitting appli-

cation for machine learning techniques, which can navigate

high-dimensional data to detect patterns and inform predic-

tive models.

II. LITERATURE REVIEW

Early research focused on the use of traditional statistical

methods and ML models like logistic regression and decision

trees to identify associations between microbial populations

and diseases. For instance, Qin et al. [1] successfully used a

logistic regression model to distinguish patients with liver

cirrhosis from healthy controls using metagenomic data.

Another notable study by Pasolli et al.[2] employed decision

trees to identify specific microbial markers associated with

colorectal cancer.

With advancements in technology and computational power,

more sophisticated ML models such as support vector

machines (SVMs), random forests, and neural networks have

been applied to this domain. These models are capable of

capturing complex, non-linear relationships within high-

dimensional metagenomic data. A study by Zeller et al. [3]

demonstrated the power of SVMs in accurately predicting

colorectal cancer from gut microbiome profiles. On the other

hand, Knights et al. [4] showcased the effectiveness of random

forests in classifying various diseases, including inflammatory

bowel disease and obesity, based on microbial community

data.

More recently, the advent of deep learning has opened up new

opportunities for disease prediction from metagenomic data.

Deep learning models, such as convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), have shown

promise in handling the complexity and high-dimensionality

of metagenomic data. For example, a study by Fiannaca et

al. [5] reported that a CNN-based approach outperformed

traditional ML models in predicting type 2 diabetes from gut

microbiota data.

Despite these advances, the application of ML in metage-

nomics is still in its infancy and is confronted with several

challenges. These include issues related to data sparsity,

overfitting, interpretability, and the need for large, well-

curated datasets for model training. Additionally, most

existing studies have adopted a ’one-size-fits-all’ approach,

designing a single model to predict a particular disease from

metagenomic data.

In light of these challenges, novel approaches such as
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few-shot learning and meta-learning have emerged. One

such approach, Model-Agnostic Meta-Learning, has been

proposed as a promising avenue for disease prediction from

metagenomic data.

III. PROJECT DESCRIPTION AND GOALS

In this work, I have implemented the Model-Agnostic Meta-

Learning framework by Finn et al. [6] coupled with few-shot

learning to assess their efficacy in the classification of diseases.

I primarily endeavored to address two questions. The first one

pertained to the comparative effectiveness of Model-Agnostic

Meta-Learning versus a traditional neural network in the con-

text of a specific task. Given the inherent complexity and vari-

ability of metagenomic data, I hypothesised that the adaptive

capacity of MAML would offer a superior performance. The

second research objective was to explore the impact of task

variability on the model’s performance. Specifically, I evalu-

ated how altering the number of classes and samples within

each task influenced the predictive outcomes.

IV. THE DATASET

A. Data Extraction

The dataset used in this project is processed using eight pub-

licly available studies containing 2424 shotgun metagenomic

samples and six different diseases. Shotgun metagenomic

analysis is a method for studying the genetic content of

microbial communities in various environmental samples. It

involves randomly sequencing DNA fragments from the entire

genomic content of a mixed population of microorganisms,

without first isolating and culturing individual organisms.

During the process, DNA is extracted from a sample of

interest, such as feces, and then fragmented into small pieces.

These fragments are then sequenced using high-throughput

sequencing technologies. The resulting data can then be

analyzed using bioinformatics tools to identify the different

microbial taxa present in the sample, infer their functional

capabilities, and investigate their interactions within the

community. Shotgun metagenomic analysis allows the study

of genetic diversity and functional potential of entire micro-

bial communities in a single experiment, providing insights

into the complex relationships between microorganisms and

their environment.

The tool MetaPhlAn2 (Metagenomic Phylogenetic Analysis)

was used to process these metagenomic datasets. MetaPhlAn2

is a computational tool designed to profile the composition of

microbial communities such as bacteria, archaea, viruses, and

eukaryotes from metagenomic sequencing data. It works by

mapping the metagenomic sequencing data against a database

of known clade-specific marker genes. These marker genes are

unique to particular microbial strains or species and can be

used to identify the presence and relative abundance of that

taxon in the metagenomic sample.

B. Data Specifications

The data file contains metadata about the samples, including

the disease state of the sample, the sample id field correspond-

ing to the sample identifier and the abundance data of various

species found in the metagenomics samples. The data is pre-

sented as a large matrix, with each row corresponding to a

sample and each column corresponding to a different species.

The values in the matrix represent the relative abundance of

each species in each sample.

C. Cleaning and Preprocessing

For the purpose of this project, I consolidated the disease

labels to streamline the dataset. The labels ’n’ and ’leaness’

were merged under the label ’healthy’. The two subtypes

of Inflammatory Bowel Disease (IBD), namely Ulcerative

Colitis and Crohn’s Disease, were merged under the ’ibd’

label. The label ’impaired glucose tolerance’ was reclassified

as ’t2d’, and the two categories of ’adenoma’ were merged

into a single ’adenoma’ label. Consequently, the refined

dataset retained only the data corresponding to the following

disease labels: ’ibd’, ’cancer’, ’cirrhosis’, ’obesity’, ’t2d’,

’adenoma’, and ’healthy’. All other data was excluded from

the analysis.

In the process of feature selection, species were chosen based

on the variability of their abundance values across all sam-

ples. Specifically, only those species were considered whose

standard deviation of abundance values exceeded a threshold

of 1. This criterion ensures the inclusion of species that exhibit

substantial variability, thereby allowing us to focus on species

that exhibited significant differential abundance in relation to

different diseases.

D. Dataset Limitations

The complexity of metagenomics data, encapsulating a vast

number of microbial species, creates a high-dimensional fea-

ture space that may lead to model overfitting and difficulties

in training. Additionally, the human microbiome showcases

considerable inter-individual and intra-individual variability,

influenced by factors such as diet, genetics, and environmen-

tal factors, which can introduce significant noise and under-

mine model generalization. Also, the heterogeneity inherent

to many diseases, such as inflammatory bowel disease (IBD)

or cancer, with various subtypes and stages, may not be en-
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tirely encapsulated by the dataset labels, potentially affecting

model performance.

V. METHODOLOGY

A. Few Shot Learning

For disease prediction based on gut microbiome data, we

might have a large number of different diseases we’re inter-

ested in predicting, but only a small number of examples of

each disease. This problem can be solved using few shot learn-

ing, where the aim is to design machine learning models that

can learn useful information from a small number of examples

- typically 1-10 training examples. The motivation behind few-

shot learning is to mimic the human ability to learn quickly

and effectively from a small number of examples

The model in this work learns to classify the species abun-

dance data into k unseen disease classes, given only n labelled

examples, i.e. the k-shot n-way classification task.

B. Model Agnostic Meta Learning

The key idea behind meta-learning is that, during meta-

training, the model learns to recognize common patterns and

structures that are shared across various tasks sampled from

the task distribution. By learning these shared patterns, the

model becomes better at adapting to new tasks, even if it has

never seen those specific tasks before. In a traditional machine

learning setting, the algorithm is trained on a fixed dataset

and then tested on a new, unseen dataset. In contrast, meta-

learning is concerned with training a model to learn how to

learn from a few examples of a new task, rather than relying

on a fixed dataset.

The key idea of MAML is to find a model initialization that

is not optimal for any single task, but instead is able to adapt

quickly to any task from a distribution of tasks. The model

is then fine-tuned on each individual task for a few gradient

steps to achieve good performance. This procedure allows the

model to learn task-invariant features and makes it capable

of generalising from a small number of samples.

The MAML algorithm has the following phases:

• Task Definition: Each task might be the classifying dif-

ferent diseases based on the metagenomic features. For

example, one task could be predicting between ”Type 2

Diabetes” and ”Inflammatory Bowel Disease” from the

abundance of different bacterial species, and so on.
• Meta-Training: During training, a batch of tasks is

sampled, and for each task, a copy of the model is cre-

ated and trained for a few steps on the training samples

of that task. The loss calculated on a test set from the

same task is then used to update the original model by

minimising a meta-objective (aggregate test loss) func-

tion.

• Meta-Testing: During testing, the model is quickly

adapted to each new task (a new disease) using a few

gradient steps. The adapted model is then used for pre-

diction on the test set of that task.

FIG. 1. MAML Algorithm[6]

C. Implementation Details

A n-shot, k-way task sampler was implemented to generate

batches of tasks for each meta-iteration. For each task, I

randomly selected k diseases and for each disease, n support

samples were randomly chosen. An equal number of query

samples (q samples) were also randomly selected for each

disease, making sure they were not already included in the

support set. This process was repeated for a specified number

of tasks (num tasks) to form a batch.

The model architecture chosen is a simple feed-forward

neural network created using the PyTorch library, having a

single input, hidden and output layer.

The MAML algorithm is used for training. For each task in

a batch, the model was deep-copied and trained using the

task’s support set for a predefined number of inner loop steps

(inner loop steps) with an Adam optimizer. The loss function

used was the Cross-Entropy Loss. After inner loop training,

the model was evaluated on the task’s query set and the

loss was computed. The meta-loss, i.e., the average of these

task-specific losses, was then calculated. The gradient of the

meta-loss was computed with respect to the global model

parameters, and a meta-optimizer was used to perform the

meta-update. This procedure was performed for a predefined

number of meta-iterations (meta iters).

After the completion of the meta-training phase, I conducted

a meta-testing phase to evaluate the performance of the

trained model on unseen tasks. I defined a number of test

tasks (num test tasks), for which a new set of n-shot, k-way
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FIG. 2. Model Layout for a 7 Class Task

tasks using the task sampler was created. For each test task, I

carried out a similar procedure to the inner loop of the meta-

training phase. I sampled a task-specific dataset from each

task, which included both training and test data. The train-

ing data was used to fine-tune the model (copied from the

final global model after meta-training), and the Adam opti-

mizer was used for this inner-loop training. The fine-tuned

model was then evaluated on the test data to calculate the

task-specific test loss using the Cross-Entropy Loss. I collected

these test losses for each task and computed the average test

loss across all the test tasks. This average test loss provided

a metric to measure the overall performance of the model

on unseen tasks.The trained model parameters were directly

utilized in this phase, showcasing the model’s ability to gen-

eralize and quickly adapt to new tasks with limited data.

Code implementation can be found here.

VI. EXPERIMENTAL RESULTS &

INFERENCES

Cross-Entropy Loss is employed as the choice of loss function

which is defined as:

L(y, ŷ) = −
C∑

i=1

yi log(ŷi) for i ∈ {1, . . . , C}

where yi is the true label (1 if the true class is i, 0 otherwise),

ŷi is the predicted probability of class i, and C is the number

of classes.

Sample Set MAML

Model

Conventional

Neural Net

Train 0.55629 0.89595

Test 1.1921 1.4145

Table 1. Cross Entropy Loss Values for MAML and

Traditional Model

The performance of the models in disease classification tasks

was also quantitatively assessed using accuracy scores. The

accuracy score provides a measure of how well the models are

able to correctly predict disease labels in relation to the total

number of instances evaluated.

Task MAML

Model

Conventional

Neural Net

Train: Cancer Vs

Type 2 Diabetes

0.91 0.96

Test: Adenoma Vs

Healthy

0.79 0.62

Train: Adenoma Vs

Type 2 Diabetes

0.89 0.93

Test: IBD Vs Cancer 0.64 0.43

Train: Adenoma Vs

IBD

0.93 0.91

Test: Healthy Vs

Cancer

0.74 0.69

Table 3. Accuracy Scores of Different Tasks

Model-Agnostic Meta-Learning algorithm shows superior per-

formance over the conventional neural network because of the

inherent adaptability of MAML, which is designed to accom-

modate new tasks effectively, a property that traditional neu-

ral networks lack.

Number of diseases

(k)

Train Accuracy Test Accuracy

2 0.97 0.77

4 0.76 0.45

7 0.72 0.34

Table 3. Accuracy Score for Varying Classes

The effectiveness of MAML decreased with an increase in

the number of classes within each task due to the increased

complexity.

Additionally, the complexity of the meta-testing task impacts

how well the model performs. When the meta-training tasks

chosen were simple (e.g. binary classification), and the meta-

testing tasks were complex (e.g. multi-class classification), the

model struggled and showed poor accuracy. As with all ma-

chine learning models, the more similar the training and test-

ing tasks are, the better the model is likely to perform.

VII. CONCLUSIONS

This work demonstrates the potential applicability of Model-

Agnostic Meta-Learning and few-shot learning in the domain

of disease prediction from metagenomic data. Employing a

meta-learning strategy has shown promising results in han-

dling the microbiome data, which is often characterized by

high dimensionality, heterogeneity, and sparsity. Moreover,

this study’s findings highlights the importance of microbiome

composition as a potential diagnostic tool.

https://colab.research.google.com/drive/1Yfe7K2_Hs2fZWr25Z0kufLXETJAzUHCi#scrollTo=BrEhP6I2D0cN


5

The use of few-shot learning, in particular, has addressed

the issue of scarcity of labeled samples, a common limitation

in medical datasets. The model’s ability to generalize from

a small number of examples in the meta-training phase

to complex tasks in the meta-testing phase, especially

compared to a traditional neural network model underscores

its robustness and flexibility.

However, it’s important to note that while many studies such

as this one have found associations between dysbiosis and

disease, it’s not yet clear whether changes in the microbiome

are a cause or a consequence of disease.

VIII. FUTURE DIRECTIONS

One potential direction is to incorporate temporal informa-

tion into our model by considering longitudinal microbiome

data, which could offer insights into the dynamic changes in

microbiome composition over time and their association with

disease progression or treatment response.

Additionally, the human microbiome’s susceptibility to var-

ious external influences, such as lifestyle, diet, and medica-

tion use, which are often not accounted for in the dataset,

can significantly impact the disease state. Thus, integrating

other types of data, could provide a more holistic view of the

host-microbiome-disease relationship and potentially enhance

prediction performance.
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